

Solidigm[™] D7-PS1010 <u>E1.S</u>

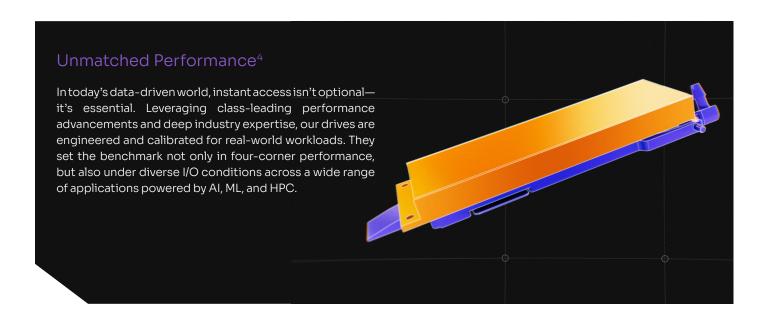
PRODUCT BRIEF

Leading The Charge in Direct Liquid-Cooled Storage Technology For The Al Era

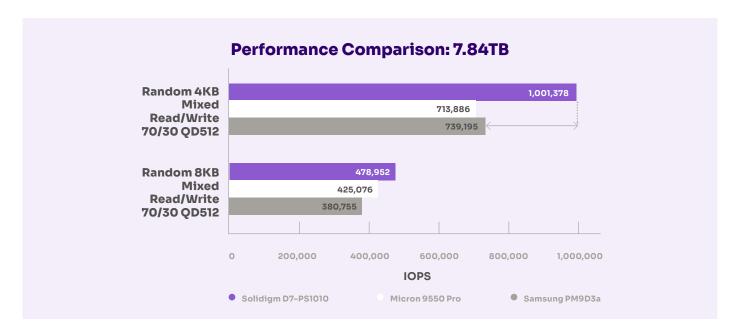
Solidigm is expanding the high performance D7-PS1010 family with the powerful first-to-market single-sided cold plate liquid-cooling SSD.

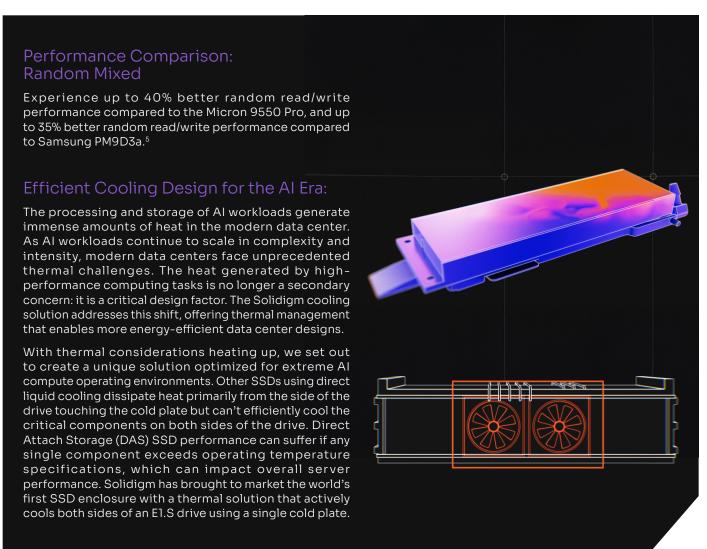
Both 9.5mm and 15mm form factors are available in 3.84TB and 7.68TB capacities.

The rapid expansion of Artificial Intelligence (AI) and High-Performance Computing (HPC) workloads is reshaping data center infrastructure, driving unprecedented increases in compute, network, and storage density, leading to higher thermal output and power consumption. Traditional air-cooling systems are increasingly inadequate for managing the heat generated by these advanced intensive workloads, especially in dense GPU server environments, as components push the boundaries of thermal and power efficiency.


Direct Liquid Cooling (DLC), or cold-plate cooling, offers a transformative solution – delivering targeted, efficient cooling directly to critical server components. This approach not only enhances thermal and system performance, but also reduces operational costs and enables innovative, fanless server designs.

The cool storage solution: The Solidigm™ D7-PS1010 E1.S SSD, represents a breakthrough in thermal optimization. Designed specifically for next-generation AI server architectures, it addresses the dual challenges of heat management and cost efficiency, delivering the high performance required for demanding AI workloads. With customer-first innovations in mind, this PCIe 5.0 SSD is equipped to keep cool in the fiery AI era.


Product Features			
Product Name	Solidigm™ D7-PS1010		
Interface	PCIe 5.0		
Media	176L TLC 3D NAND		
User Capacity (TB)	3.84 and 7.68		
Form Factor and Cooling	9.5mm Cold Plate Cooling or Air-cooled	15mm Air-cooled only	
Endurance Rating	Standard Endurance (SE)		
Endurance (5-yr)	1.0 DWPD		
Max Lifetime PBW (5-yr)	14 PBW @ 7.68TB		
Max Avg Active Read & Write Power	25W (PCIe 5.0 and 4.0)		
Idle Power	5W (EU Lot 9-compliant)		
MTBF	2.5 Million Hours (25% higher) ²		
UBER	Tested to 1E-18 (10x higher) ³		


1

Product	Sequential Read	Sequential Write	Random Read	Random Write
	128KB	128KB	4KB	4KB
Solidigm™ D7-PS1010	1.12X Up to 14,500 MB/s	1.62X Up to 10,500 MB/s	1.18X Up to 3.3M IOPS	1.60X Up to 400K IOPS
Samsung PM9D3a baseline	1.0X	1.0X	1.0X	1.0X
	Up to 13,000 MB/s	Up to 6,500 MB/s	Up to 2.8M IOPS	Up to 250K IOPS
Micron 9550	1.08X	1.54X	1.18X	1.60X
	Up to 14,000 MB/s	Up to 10,000 MB/s	Up to 3.3M IOPS	Up to 400K IOPS
Kioxia XD8	0.96X Up to 12,000 MB/s	0.89X Up to 5,800 MB/s	0.82X Up to 2.3M IOPS	1.0X Up to 150K IOPS

Solidigm™ D7-PS1010 Performance			
Workload	Unit	3.84TB	7.68TB
128KB Sequential Read	GB/s	14.5	14.5
128KB Sequential Write	GB/s	8.4	14.5
4KB Random Read	IOPS	3,200K	3,300K
4KB Random Write	IOPS	315K	400K
4KB Random Mixed 70/30 RR/RW	IOPS	729K	950K

Key Advantages: Air-cooled

Superior Energy Efficiency: The Solidigm D7-PS1010 E1.S 15mm air-cooled SSD drops energy usage by up to 33% when compared to similar solutions.⁶

Air-Cooled SSD Cooling Energy Savings

E1.S SSD	Workload Power (W)	SSD Cooling Energy per Year	Compare
Micron 9550 (15mm air-cooled)	19.0W	5.35 kWh	1.0x (baseline)
Solidigm D7-PS1010 (15mm air-cooled)	22.0W	3.61 kWh	0.67x

33% lower cooling energy usage

Key Advantages: Liquid-cooled

Optimized for AI workloads: Designed to handle the thermal output of AI-driven operations, the D7-PS1010 will provide stable and efficient DAS performance.

Superior Energy Efficiency: The D7-PS1010 E1.S 9.5mm liquid-cooled cold-plate drops energy usage by up to 84% when compared to the competition's air-cooled comparable.⁷

Forward-looking Design: By 2027, next-generation rack-scale GPU platforms will support 8 times the number of GPUs as compared to today's state-of-the-art systems. Our 9.5mm E1.S solution helps to enable this progress in server density by eliminating the need for loud and inefficient air-cooling fans, reducing the physical footprint of cooling infrastructure. This fanless GPU server solution allows for more density without compromising efficient performance and cooling energy usage.

Cold-Plate Energy Savings vs. Air-Cooled SSDs

E1.S SSD	Workload Power (W)	SSD Cooling Energy per Year	Compare
Micron 9550 (15mm air-cooled)	19.0W	5.35 kWh	1.0x (baseline)
Solidigm D7-PS1010 (9.5mm liquid-cooled)	22.0W	0.85 kWh	0.16x

84% lower cooling energy usage vs. AC SSDs

- 1. https://www.datacenterknowledge.com/data-storage/liquid-cooled-ssd-eases-ai-data-center-heat-challenges
- 2. As compared to previous generation Solidigm $^{\text{TM}}$ D7-P5520 7.68TB. See <u>Solidigm D7-PS1010/PS1030 product brief</u> for performance, exceptions and modifications for compliance/support details.
- 3. As compared to previous generation Solidigm™ D7-P5520 7.68TB. See Solidigm D7-PS1010/PS1030 product brief for performance, exceptions and modifications for compliance/support details.
- 4. Solidigm expects up to 5% variation in throughput between drive-to-drive runs. Sequential performance is measured with Queue Depth 128 (1 Worker), Random performance is measured with Queue Depth 512 (QD64 x 8), at Power Mode set to PSO.FIO Version 3.35 and SPDK Version 23.01 are utilized in Solidigm measurement environment with 32 Core CPUs and 256GB DRAMs. Measurements are performed on full LBA span of the drive with pre-conditions for 100% read workloads. Any change in the system or drive configuration may impact drive performance. Transfer Block Size greater than 32K is recommended for NVMe SGL feature.
- 5. Source: Solidigm internal testing. Server: Supermicro ASG-1115S-NE316R. Mainboard: Supermicro Server Board H13SSF, Version 2.0. BIOS: SE5C6200.86B.4018. D65.2010201151. CPU: AMD Epyc 9374F, CPU Sockets: 1, Number of Cores: 32. DRAM: DDR5 256GB. OS: Rocky Linus Release 8.10, Kernel Version: 4.18.0-553.el8_10.x86_64. Tool: NVMe Driver: Inbox, FIO Version: 3.19. Storage: Solidigm D7-PS1010, Micron 9550 Pro, Samsung PM9D3a
- 6: Source Solidigm. Results are calculated from airflow and pressure drop measurements of fluid in a typical server fan/pump condition for 35C air and 45C liquid inlet temperature while running worst thermal workload for 8 E1.S eSSDs.
- 7. Source Solidigm. Results are calculated from airflow and pressure drop measurements of fluid in a typical server fan/pump condition for 35C air and 45C liquid inlet temperature while running worst thermal workload for 8 El.S eSSDs.
- 8. Source: https://www.datacenterdynamics.com/en/news/nvidias-rubin-ultra-nvl576-rack-expected-to-be-600kw-coming-second-half-of-2027/

Four-corners competitive comparison SSDs:

Samsung 9D3a Micron 9550 Kioxia XD8

 $All\ product\ plans, roadmaps, specifications, and\ product\ descriptions\ are\ subject\ to\ change\ without\ notice.$

Nothing herein is intended to create any express or implied warranty, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, or any warranty arising from course of performance, course of dealing, or usage in trade.

The products described in this document may contain design defects or errors known as "errata," which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your Solidigm representative or your distributor to obtain the latest specifications before placing your product order.

For copies of this document, documents that are referenced within, or other Solidigm literature, please contact your Solidigm representative.

All products, computer systems, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

@ Solidigm. "Solidigm" is a trademark of SK hynix NAND Product Solutions Corp (d/b/a Solidigm). "Intel" is a registered trademark of Intel Corporation. Other names and brands may be claimed as the property of others.

Solidigm may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Solidigm reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase.

Performance results are based on testing as of dates shown in the configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component can be absolutely secure.

Solidigm or Intel optimizations, for Solidigm or Intel compilers or other products, may not provide optimized performance to the same degree for non-Solidigm or Intel products. Solidigm or Intel technologies may require enabled hardware, software, or service activation.

Your costs and results may vary.

Solidigm does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Some results have been estimated or simulated using internal Solidigm analysis or architecture simulation or modeling, and provided to you for information purposes only. Any differences in your system hardware, software or configuration may affect your actual performance.